Lean Yellow Belt Operational Excellence

Problem Solvency & Eliminating Wasteful Procedures

What's Coming Up?

Member

dcm

Free and unrestricted for DCM Members

Problem Solving & Eliminating of Wasteful Procedures

Session Schedule

- 2.00pm 2.50pm
- 3.00pm 3.50pm

TODAYS – SLIDE DECK

Session Content

- **Problem Solving Teams**
- **Problem Statements**

Yellow Belts

dcm Member

Event

Business Agility

2. Map Value Stream

3. Create Flow

The nature of "FLOW"

Step 2

Member

Fvent

dcm

VA = Value AddNVA = Non - Value Add NNVA = Necessary Non Value Add

Step 3

8 Muda

Cynefin Model

Simple **Problems**

Known Knowns **OBVIOUS**

Chaotic

Unknowable's

Complicated **Problems**

Known **Unknowns** **BEST Practise Experts**

Unknown **Unknowns**

Problems

NOVEL

Complex **Problems**

PROBE / SENSE AGILITY

Cynefin Model

- The Simple Problem
- The Complicated Problem
- The Complex Problem
- The Chaotic Problem

The Simple Problem

- The first type of problem in Snowden's framework is *simple* and *obvious*.

It has already been solved, and there actually is a best practice that works all the time

The Complicated Problem

- Known Unknown
- Ship stuck is the Suez Canal Problem is known but the exact solution isn't obvious

The Complex Problem

- Multiple unknown forces
- Climate Change

The Chaotic Problem

- Essentially a Crisis

A Tsunami, Riot, Storm, Stock Market crash, Power outage, Covid -19

PART 1

ggreent **N**

Unpredictable, dynamic

Requires retrospective analysis or probing, sensing, responding

Complicated

Simple

Goal is "good enough" iteration

Fairly predictable

Requires expert knowledge & analysis

Goal is "optimal" solution

No certainty

LEAN Teams

Different problems require different solutions

PDCA – Plan – Do – Check – Act

The Deming Cycle

The Deming Cycle

Kaizen

KAIZEN

KAIZEN

What is A3 Problem Solving

Example of completed problem-solving A3 / ONLINE HOURE 1

Member

Action .	inoc	STAFT.	Ded	Thinking.	Seinaka	D i d
agrism and process tour closer:	Mi Humigtin Mi Howigt	Apr. 23	am, 26	-		
Signian and process (ICTO process	Mr. Hermglon: Mr. fowari	345.23	29 ,28	C 16		
agram end process. Rys	Mt runnigton Mt reason	an 73	101.75	6/N		×
agrum and process L Depths	Mi numplin Mi feneni	ien 23	imi 78	Carl		.1
again and process scorebly	Mr. Harringson Mr. Rosean	141.20	ani 26	C *		×.
agrum and jimone 8 dock work cante	Mt. Harrington Mt. Howard	APR 23	101.76	5/W.	() 	
ton study	Alt Harrights Mt. Howart	349.23	iat. 26	CW.		
Fance date target	rigr beinard	146.15	385.23	6.W		. 1
af stats	Mr. Roware .	345.15	ian 16	1000	C	8
1 Aborne al	Mt lictwise	Jun. 13-	101.75	0.00	. – 11	1.
course data to kitting	1	1000		CW.	(A)	1

A3

A3

Jeffrey.K.Liker.The Toyota Way

A3

A3 & PDCA Cycle

DMAIC v's PDCA

DMAIC

DEFINE Define the problem and the ideal in terms of the target to achieve.

MEASURE Collect relevant data about the process and the problem.

ANALYSE

Analyse the process to identify the cause-effect relationship between inputs and outputs. Identify the vital few root causes.

IMPROVE

Determine the optimum values for key contributing process inputs. Implement solutions to eliminate

the root causes.

CONTROL

Establish standards and controls to sustain improvements in the long run.

ACTIVITY TIME – READ THE CASE STUDY

PART 2

What is a Problem

- Undesired situation
- A matter or situation regarded as unwelcome or harmful and needing to be dealt with and overcome.

What is a Problem

Above the surface you see the **Symptoms** of the problem

Dig deeper to find the **Root Cause** of the problem

What do we KNOW

What don't we KNOW

How do we Find Out

- Observe ?
- Interview ?
- Measure ?
- Test ?
- Experiment ?
- Trial ?
- Exchange ?
- Reproduce ?
- Dis-assemble
- De-construct
- Consult

Symptoms V's Root

- Symptoms (what we see)
- Root Cause (trigger / enabler)

Barriers

- Confirmation Bias
- Rigid Mentality
- Functional Fixedness
- Unnecessary constraints
- Irrelevant Information

What is a Solution

- Counter Measure
- The most effective arrangement of Tasks, Actions and resources to overcome the problem permanently.

Membei

- Problem Statement
- A GOOD Problem Statement should
 - State the current undesired situation
 - Quantify the problem
- A GOOD Problem Statement should NOT
 - Assume the cause
 - Assume the solution
 - Assume any blame

Member

- A BAD Problem Statement (examples)
 - "Everyone needs to be retrained on....."
 - More resources are needed to improve leadtime....
 - Machine always broken.....Process always takes too long.

–Jump to conclusions, ambiguous, opinion driven.

A GOOD Problem Statement (example)

–During the period 1st Jan 2018 until June 30th 2018, >15% of customer queries were not resolved first time leading to 250hours of overtime to handle the escalations costing $\in 12,500$

- **Provides the facts** ullet
- **Provides timescales and impact to the business** \bullet
- Clear and concise non objectionable

- A GOOD Problem Statement structure (Item) is a problem because it affects (Case / impact) and we have established the (evidence).
- Case / impact : is quality, cost, service and or frequency Evidence : is a symptom(s) or data collected
- Item : is a condition, procedure, hardware, equipment or process

Stakeholders

Member

Event

dci

- Dave M
- Supervisors
- Admin Staff
- PINK Board of Directors
- PINK Ownership
- Brokers
- Clients (end users)
- UK Division
- HR Dept
- Finance Dept
- IT dept
- Insurance Ombudsman

Synptoms

Member

Event

dcm

- Emotional
- Stress & Pressure
- Workload issues
- Working through Lunch
- Struggling to get Vacations
- Poor management
- Bad communications
- Rework
- Random corrective actions (10 min calls)
- Salary pressure
- Resourcing issue
- Planning issues
- Capacity issues

The Facts

Capacity of Team

25people x 5days x 10applications x 46 weeks

The new business processing dept in PINK Dublin is handling 10% more applications (63,250) than it is designed to handle (57,500) due to a high percentage (15%) of bad applications placing a strain on employees and on broker community loyalty.

36 mins per application reduced to < 30 mins = 6 mins saving.

16.6% time reduction (36-30) / 36

16.6% of €875K = €145,833 savings in reduced staff salaries

Cost of 1 Team = $\in 175,000$ / YEAR.

MindMaps

MindMaps

Member

Event

dc

dcm Member

Event

What you THINK it is..

dcm | Member Event

What it SHOULD be..

Primary Activities

| Member

Event

dcm

| Member

Event

dcm

ACTIVITY TIME – MAP THE PROCESS - COFFEE

| Member

Event

dcm

Error Proofing

dcm Member

Event

Alert

Visual Aids

Illustrate

Procedures , Instructions and Manuals

Describe

Quality Planning

dcm | Member Event

Process Audits

A **process audit** is an examination of results to determine whether the activities, resources and behaviours that cause them are being managed efficiently and effectively.

A **process audit** is not simply following a trail through a department from input to output - this is a transaction **audit**

Thank You

Q&ADiscussion

Contact Us

padraig.mccabe@dcmlearning.ie

ruth@dcmlearning.ie

info@dcmlearning.ie 01 524 1338